

Katie Jagt, PE Consulting Engineer to American Rivers

Problem Statement

All projects that are required to provide "multiple benefits" or have "co-equal" goals need succinct and replicable methods for evaluating functionality for ecologic purposes.

Goals for the metric

- •Useful both as a screening and design tool.
- •Adapted to measure habitat/benefit for a variety of species/objectives.
- •Easily applied: standard tools and available data.
- Transparent and replicable

Linked to Measurable Objectives

- •To have measurable objectives, there must be some criteria to measure
- •By creating a method that uses the same input as flood damage models it is an easy way to transform existing data into a metric that can measure progress and/or damage for sensitive species.

Initial Approach: Borrowing Ideas?

Inspiration

<u>New Metric</u>

Intensity (Depth)-Duration-Frequency Curves in Hydrology

Area-Duration-Frequency Curves for Habitat

Estimated Annual Damage in Flood Risk Analysis

Estimated Annual Habitat

Inputs

- Required
 - Hydrologic records
 - Topographic data
 - Species preferences
- Optional
 - Land cover
 - Vegetation

Ecosystem Relationships

Ecological Relevance	Season	Duration	Frequency
Splittail spawning and rearing	Feb – May	At least 21 days	At least 4 yr return period
Chinook salmon rearing	Dec – May	At least 14 days	At least 2 yr return period
Phytoplankton production	Dec – May	At least 2 days	1.3 yr return period
Zooplankton production	Dec – May	At least 14 days	1.3 yr return period
Benthic macroinvertebrate production	Dec – Sep	At least 1 day	2 yr return period

Method Flow—Inputs hydrologic

HEC-EFM: Hydrologic Statistics

HEC-EFM: Hydrologic Statistics

HEC-EFM: Hydrologic Statistics

		_ •		
ПП	PO	11		nc
4UU	La	LI	U	110

1-Day

3-Day

7-Day

14-Day

21-Day

28-Day

60-Day

Method Flow—Inputs Hydraulic

HEC-RAS and other hydraulic models

HEC-RAS and other hydraulic models

Method Flow—Outputs and Results

ADF Curves: Definition

Intensity-Duration-Frequency Curves in Hydrology Defines the variable we are interested in for design (intensity) as a function of duration and frequency.

Area-Duration-Frequency Curves Defines the variable we are interested in for design (quantity of functional habitat) as a function of duration and frequency.

Q vs Area Curves

ADF Curves: Example

ADF Curves: Species Specific

Method Flow—Output and Results

EAH Value: Definition

Estimated Annual Damage in Flood Risk Analysis Defines the total (negative)risk in an area <u>as an annual</u> <u>monetary loss</u>.

Estimated Annual Habitat

Defines the total (positive)risk in an area as an annual habitat gain.

Develop EAH

Probability (given as Recurrence Interval)

Develop EAH

EAH Results

Climate Change EAH

Uncertainty?

Uncertainity

Probability (given as Recurrence Interval)

Assumptions: Benefit as Risk

Assumptions: functional habitat...?

Physical

- Area
 - √depth
 - √ velocity
 - √ cover
 - ✓ vegetation
 - **Connectivity**

<u>Hydrologic</u>

- Duration
- Frequency
- Timing

Assumptions: functional habitat...?

Physical •Area **√**depth ✓ velocity √cover ✓ vegetation **Spatial Variables ✓** connectivity **Temporal Variables**

Hydrologic

- Duration
- Frequency
- Timing

<u>Flexibility</u>

Physical Alterations

- Levee setbacks
- New bypasses
- Floodplain grading
- •Weir and grade control structures
- Dredging
- Side channel reconnection

Hydrologic Alterations

- Weir Notching/lowering
- Reservoir Operations
- Climate Change

Regional Applications—Valley Wide

